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Abstract

A core-particle (CP) model is derived to analyze transverse orbits of test-particles evolving in the presence of a core ion beam that has

uniform density within an elliptical cross-section. The model can be applied to both quadrupole and solenoidal focused beams in periodic

or aperiodic lattices. Efficient analytical descriptions of electrostatic space-charge fields external to the beam core are derived to simplify

model equations. Image-charge effects are analyzed for an elliptical beam centered in a round, conducting pipe to estimate model

corrections resulting from image-charge nonlinearities. Transformations are employed in diagnostics to remove coherent flutter motion

associated with oscillations of the ion beam core due to rapidly varying, linear applied-focusing forces. Diagnostics for particle

trajectories, Poincaré phase-space projections, and single-particle emittances based on these transformations better illustrate the effects of

nonlinear forces acting on particles evolving outside the core. A numerical code has been written based on this model. Example

applications illustrate model characteristics. The CP model described has recently been applied to identify physical processes leading to

space-charge transport limits for an rms-envelope matched beam in a periodic quadrupole focusing-channel [S.M. Lund, S.R. Chawla,

Nucl. Instr. and Meth. A 561 (2006) 203]. Further characteristics of these processes are presented here.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Core-particle (CP) models constitute a highly reduced
description of beam evolution where single particles are
analyzed that evolve both inside and outside a continuous
core distribution with specified properties. Contributions
of the test-particles to the beam self-field are neglected,
rendering the model inconsistent. CP models based on a
core Kapchinskij–Vladimirskij (KV) distribution with uni-
form space-charge have had considerable success in
predicting the maximum amplitude of halo particles
evolving outside an envelope mismatched beam core with
high space-charge intensity [1–4]. Recent work with a KV
distribution based CP model applied to a matched
e front matter r 2007 Elsevier B.V. All rights reserved.
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envelope beam core [5] refines earlier related work [6,7]
and suggests that long-observed space-charge related
transport limits of a quadrupole focused beam result from
strong resonance effects that allow significant populations
of near-edge particles to undergo rapid chaotic transport to
larger oscillation amplitudes due to overlapping resonances
that approach the beam core. The main drawback of
KV-based CP models is that they provide no consistent
mechanism for particles launched within the core distribu-
tion to evolve outside the core. Effects outside the model
must be appealed to for this purpose. Consequently,
general predictions made with CP models should be
carefully checked with fully self-consistent simulations.
Nevertheless, the simplicity of the model facilitates analysis
of characteristic particle orbits that can, in turn, aid
interpretation of complicated transport limiting processes
such as halo production, particle losses, and contributions
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to beam rms-emittance growth from particles evolving
outside the beam core.

Uniform density core beams modeled by the self-
consistent KV distribution have typically been employed
in transverse CP models [8,29,30]. This approach has
advantages in that the evolution of the beam core can be
simply described in terms of the evolution of the beam
edge. Envelope equations that describe the edge evolution
of the KV beam core are coupled ordinary differential
equations that are well understood both in terms of the
matched envelope (i.e., the beam edge has the periodicity of
the focusing-lattice) and any mismatch perturbations
[9,10]. The KV distribution is presently the only known
exact equilibrium solution to Vlasov’s equation in a
periodic focusing-lattice. Alternative models for nonuni-
form beam cores have been proposed, often by assuming
a self-similarly evolving nonuniform density profile core
(see for example, Refs. [11–13] and references therein). No
self-consistent equilibrium distributions are known that
generate self-similar density evolutions, and even if such
equilibria exist, they are unlikely to approximate the
physical Vlasov evolution of a realistic core. Generally,
the collective wave response is expected to be such that the
functional form of the spatial variation in the beam density
profile evolves from the initial form. Normal mode
calculations with simple (continuous focusing model)
equilibrium distributions suggest that perturbations will
generally evolve with wavelengths incommensurate with
the lattice period in a periodic transport-channel [14,15].
Hence, it is highly improbable that an initial density
nonuniformity can project on a spectrum of normal mode
perturbations that add together to produce a self-similarly
evolving beam density profile.

For a particle moving both inside and outside a core
distribution, forces acting on CP model test-particles will
result from the linear applied-focusing fields of the lattice
and space-charge fields generated by the core. The applied
field forces rapidly oscillate in a periodic focusing-lattice.
The space-charge forces produced by the core can be
resolved as being a component due to a uniform density,
rms-equivalent beam with elliptical envelope plus a
component due to the difference between the actual and
uniform beam distribution. For the uniform component,
the fields exterior to the beam will be highly nonlinear and
the fields interior to the beam will be linear. Both the
interior and exterior components will oscillate with the
variation of the elliptical envelope in response to applied-
focusing forces of the lattice and self-field defocusing
forces. The impulse imparted by the oscillating linear forces
of the core on a test-particle traversing the core can
increase or decrease the energy of the particle depending on
the phase of the particle’s oscillation through the core. The
self-fields generated by the nonuniform density component
will rapidly oscillate (the collective response will be at
harmonics of the plasma frequency) producing nonlinear
fields both interior and exterior to the edge of the beam
core. Collective mode decompositions of the nonuniform
density perturbations will have normal mode components
with a broad spectrum of wavelengths generally incom-
mensurate with the lattice period. Since the nonuniform
density component carries zero net charge, it is expected to
only weakly perturb the external forces generated by a
uniform density beam core except for when the particle is
close to the edge of the core and nonuniformities are large.
(By Gauss’ Law, the nonuniformities will generate zero
perturbations external to the core of an axisymmetric beam
at radii where all core particles are contained.) The interior
nonlinear forces produced by the nonuniform density
component will oscillate rapidly within the lattice period
and one would expect for limited amplitudes and
distributed phases of the mode components that these
perturbations will impart minimal net impulse on particles
diving in and out of the core over several periods of the
lattice. This random phase argument will also apply to
external force components, further lessening the influence
of the nonuniformities external to the core. These effects
lead one to believe that KV distribution based CP models
should be reliable for strongly expressed resonances of a
particle diving in and out of a realistic space-charge-
dominated core distribution where the density profile is
expected to be relatively uniform due to Debye screening
effects [14], phase-mixing, Landau damping, and various
nonlinear relaxation processes [16]. The model can also
apply for relatively weak space-charge, because although
the weak space-charge field may be inaccurately described
by a uniform beam model, the component of the force
acting on the particle due to space-charge becomes
relatively weaker.
Here, we derive an efficient CP model to calculate

trajectories of test ‘‘halo’’ particles evolving both inside and
outside a uniform density elliptical beam with linear
applied-focusing forces varying arbitrarily in the axial
coordinate s of the lattice. This model is applied to an
envelope matched beam propagating in a periodic focus-
ing-lattice to analyze strong chaotic processes that can
allow particles moving just outside the beam edge to
rapidly increase in oscillation amplitude. Recent studies
have shown that such processes can elucidate space-charge
transport limits that result from statistical beam emittance
blow-up and particle losses [5,17].
The organization of this paper is the following. An

efficient CP model for a test-particle moving inside and
outside a uniform density elliptical beam core is derived in
Section 2. Effects of both s-varying applied fields and
space-charge fields (direct and image) generated by the core
are analyzed. Diagnostics and a numerical code implemen-
tation are discussed. Example applications of this model
are presented in Section 3 to illustrate processes leading to
space-charge transport limits associated with envelope-
matched beams propagating in periodic quadrupole and
solenoidal focusing-lattices. Concluding comments in Sec-
tion 4 summarize how the model can be applied to analyze
space-charge related transport limits due to beam emit-
tance growth and particle losses.
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(a)  FODO Quadrupole

(b)  Solenoid

Fig. 1. Periodic focusing-lattices for: (a) FODO quadrupole focusing, and

(b) solenoidal focusing.
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2. Core-Particle model

We assume a continuous, unbunched ion beam core
propagating in an arbitrary linear transport-lattice. The
axial coordinate is s and the linear applied focusing-fields
of the lattice are described by focusing-functions kjðsÞ with

j ¼ x, y. A test-ion of charge q and mass m with axial

relativistic factors bb ¼ const and gb ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2b

q
moves

in the presence of the core beam and the applied-focusing
forces. In the paraxial approximation, the transverse
coordinates xðsÞ and yðsÞ of the test-particle evolve
according to the equations of motion [9,10]

x00 þ kxx ¼ �
q

mg3bb
2
bc2

qf
qx

,

y00 þ kyy ¼ �
q

mg3bb
2
bc2

qf
qy

. ð1Þ

Here, primes denote derivatives with respect to s, c is the
speed of light in vacuo, and f is the electrostatic potential
of the beam core. The potential is given in terms of the core
charge-density r by the solution to the transverse Poisson
equation

q2

qx2
þ

q2

qy2

� �
f ¼ �

r
�0
. (2)

Here, �0 is the permittivity of free-space. Solutions for f
must satisfy boundary conditions ðf ¼ constÞ on any
conducting surfaces associated with material apertures.

This formulation can be applied to a wide variety of
focusing-lattices including continuous ðkj ¼ k2

b0 ¼ constÞ,
solenoidal ðkx ¼ kyÞ, and quadrupole (kx ¼ �ky) focusing.
Specific forms for the focusing coefficient kj can be found
in Ref. [10]. For solenoidal focusing, the particle orbits
must be interpreted as being expressed in a rotating
Larmor frame (see Appendix A of Ref. [10]). The lattice
need not be periodic. For periodic lattices, the scales of the
kj can always be set by the undepressed particle phase-
advances s0j (measured in degrees per lattice period). In
lattices with sufficient plane-symmetry, s0x ¼ s0y � s0.
Piecewise constant FODO quadrupole and solenoidal
focusing-lattices that will be employed in examples in
Section 3 are shown in Fig. 1. We denote the lattice period
by Lp, the fractional occupancy of focusing-elements in the
period by Z 2 ð0; 1�, and the drift distances between
focusing elements by d. Formulas for setting s0 in simple
lattices with piecewise-constant kj can be found in the
references. Although it is not necessary for the general
validity of the model, in the remainder of the present study
we assume that the test-ions are identical to the single
species of ion in the core beam and that the axial velocity of
the test-ions are equal to the mean axial velocity of ions in
the unbunched beam core.

Regardless of the structure of the charge-density rðx?Þ as
a function of the transverse coordinate x? ¼ xx̂þ yŷ, the
linearity of the Poisson equation (2) can be exploited to
resolve the electric self-field of the beam as

E? ¼ �
qf
qx?
¼ Ed

? þ Ei
?, (3)

where

Ed
?ðx?Þ ¼

1

2p�0

Z
d2 ~x?

rð ~x?Þðx? � ~x?Þ

jx? � ~x?j
2

(4)

is the direct-field produced by the beam charge-density in
free-space, and

Ei
?ðx?Þ ¼

1

2p�0

Z
d2 ~x?

rið ~x?Þðx? � ~x?Þ

jx? � ~x?j
2

(5)

is the so-called image-charge field produced by the induced
charge-density riðx?Þ on the conducting aperture of the
machine. The image-charge field Ei

? depends both on the
geometry of the machine aperture and on the distribution
of beam space-charge internal to the aperture.
In a linear-focusing system it is reasonable to expect an

idealized beam to have elliptical symmetry charge-density
r, i.e., with r constant on surfaces with ðx=rxÞ

2
þ ðy=ryÞ

2
¼

const. Here, the rj are taken to be positive, and the ratio
rx=ry defines the ellipticity of r. Generally, the rj will
vary as functions of s consistent with the evolution of the
core distribution. For such elliptical symmetry r, the
direct-field Ed

? produced by the beam core can be
calculated in terms of a potential fd as Ed

? ¼ qfd=qx?
with [18]

fd
¼ �

rxry

4�0

Z 1
0

dx
GðwÞffiffiffiffiffiffiffiffiffiffiffiffiffi

r2x þ x
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

r2y þ x
q þ const. (6)
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Here, w � x2=ðr2x þ xÞ þ y2=ðr2y þ xÞ, and GðwÞ is any func-
tion such that

r ¼
dGðwÞ
dw

����
x¼0

. (7)

An appropriate choice of G can always be made for
elliptical symmetry r. It is straightforward to verify
that Eqs. (6) and (7) satisfy the direct-field
Poisson equation q2f=qx2? ¼ �r=�0 for r with elliptical
symmetry.

Motivated by the overview discussion in Section 1, we
consider a uniform density beam core centered at x ¼ 0 ¼
y with

r ¼

l
prxry

; if
x2

r2x
þ

y2

r2y
p1;

0; if
x2

r2x
þ

y2

r2y
41:

8>>>><
>>>>:

(8)

Here, l ¼ const is the beam line-charge density, and rj are
the edge-radii of a uniform density elliptical beam. It is
straightforward to verify that

GðwÞ ¼
l

prxry

w; if wp1;

1; if w41;

(
(9)

produces the required uniform density elliptical core
consistent with Eqs. (7) and (8). Inserting Eq. (9) in Eq.
(6) gives [14,19]

fd
¼ �

l
4p�0

Z xb

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ x

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2y þ x

q
8><
>:

þ

Z 1
xb

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ x

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2y þ x

q x2

r2x þ x
þ

y2

r2y þ x

 !9>=
>;

þ const ð10Þ

where xb ¼ 0 when ðx=rxÞ
2
þ ðy=ryÞ

2p1 (within the core),
and xb is the positive root of

x2

r2x þ xb
þ

y2

r2y þ xb
¼ 1 (11)

when ðx=rxÞ
2
þ ðy=ryÞ

241 (outside the core). This gives
both inside and outside the core,

Ed
x ¼ �

qfd

qx
¼

l
2p�0

Z 1
xb

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ x

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2y þ x

q x

r2x þ x

¼
l
p�0

x

ðrx þ ryÞrx

Fd
x,

Ed
y ¼ �

qfd

qy
¼

l
2p�0

Z 1
xb

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ x

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2y þ x

q y

r2y þ x

¼
l
p�0

y

ðrx þ ryÞry

Fd
y , ð12Þ
where Fd
j are direct-field form factors given by

Fd
x ¼

rx

rx � ry

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2y þ xb
r2x þ xb

s0
@

1
A,

Fd
y ¼

ry

ry � rx

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ xb
r2y þ xb

s !
, ð13Þ

and

xb ¼

0; if x2

r2x
þ

y2

r2y
p1;

�
ðr2xþr2y�x2�y2Þ

2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2xþr2y�x2�y2Þ2�4ðr2xr2y�x2r2y�y2r2xÞ

p
2

; if x2

r2x
þ

y2

r2y
41:

8>>>>><
>>>>>:

(14)

Eqs. (12)–(14) for the direct-fields have been employed in
Eq. (1) with zero image-fields by Wang [3] to analyze test-
particles evolving in the presence of a uniform density
elliptical beam.
Interior to the beam core, xb ¼ 0 giving Fd

j ¼ 1 and
Eq. (12) reduces to the well-known result for the direct-
fields within a uniform density elliptical beam with [14,20]

Ed
x ¼

l
p�0

x

ðrx þ ryÞrx

; Ed
y ¼

l
p�0

y

ðrx þ ryÞry

. (15)

Note that inside the beam Ed
x and Ed

y are linear functions of
x and y. Exterior to the beam, xba0 and the direct-fields
are complicated nonlinear functions of the coordinates and
beam edge-radii rj . For the special case of a round beam
ðrx ¼ ry ¼ rbÞ, a limit analysis of Eqs. (12)–(14) for the
exterior fields shows that

Ed
x ¼

l
2p�0

x

r2
; Ed

y ¼
l

2p�0

y

r2
, (16)

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The characteristic 1=r exterior ðr4rbÞ

nonlinearity is consistent with the well known result
obtained from a direct application of Gauss’ Law.
For a test-particle evolving both inside and outside of the

uniform density elliptical beam core, the equations of
motion (1) can be conveniently expressed as

x00 þ kxx ¼
2QFx

ðrx þ ryÞrx

x,

y00 þ kyy ¼
2QFy

ðrx þ ryÞry

y. ð17Þ

Here,

Fj ¼ Fd
j þ F i

j (18)

are form-factors due to due to direct (d) and image (i)
contributions, and

Q ¼
ql

2p�0mg3bb
2
bc2
¼ const (19)

is the dimensionless perveance [9]. Because Fj ¼ 1 within a
uniform density core beam without image-charge effects,
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the form of Eq. (17) emphasizes nonlinear effects (i.e.,
Fja1 with variation in x and y) due to direct external fields
and image-charges.

An alternative calculation of the direct-field Ed
? exterior

to a uniform density elliptical beam can be carried out
as follows to obtain a simpler expression than given by
Eqs. (12)–(14). First, without loss in generality, Eq. (4) for
the direct-field can be expressed in complex form as

Ed � Ed
y þ iEd

x ¼
i

2p�0

Z
d2 ~x?

rð ~x?Þ
z� ~z

. (20)

Here, underlines denote complex quantities, i �
ffiffiffiffiffiffiffi
�1
p

, and
z ¼ xþ iy. Using a multipole form expansion exterior to
the beam, one obtains

Ed ¼
X1
n¼1

Cnz�n (21)

with

Cn ¼
i

2p�0

Z
d2x?rðx?Þzn�1. (22)

Exterior to beam, the direct-field Ed
? satisfies the vacuum

Maxwell equations =? � E
d
? ¼ 0 and =? � Ed

? ¼ 0. Or
equivalently, the transverse field components satisfy

qEx

qx
¼ �

qEy

qy
;

qEy

qx
¼

qEx

qy
, (23)

which can be recognized as the Cauchy–Riemann condi-
tions for the complex field Ed ¼ Ed

y þ iEd
x to be an

analytical function of z ¼ xþ iy. This analyticity of EdðzÞ

allows the series expansion given by Eqs. (21) and (22) to
be applied in the entire vacuum region exterior to the
elliptical beam core. Using the uniform density r defined by
Eq. (8) in Eq. (22) obtains, for ðx=rxÞ

2
þ ðy=ryÞ

241,

Ed ¼
il
p�0

X1
n¼1;3;5;...

ðn� 1Þ!

2n n� 1

2
þ 1

� �
!

n� 1

2

� �
!

ðr2x � r2yÞ
ðn�1Þ=2

zn
.

(24)

This series can be summed and the form factor definitions
applied to show that exterior to the beam

Fd
x ¼ ðrx þ ryÞ

rx

x
Re½S�,

Fd
y ¼ �ðrx þ ryÞ

ry

y
Im½S�, ð25Þ

where

S �
z

r2x � r2y
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

r2x � r2y

z2

s2
4

3
5

¼
1

2 z
1þ

1

2

r2x � r2y

z2
þ

1

8

ðr2x � r2yÞ
2

z4
þ � � �

" #
. ð26Þ

The second expanded form of S in Eq. (26) is useful when
then beam envelope is nearly round with rx ’ ry. Note that
for a round beam with rx ¼ ry ¼ rb, only one term in the
sum remains giving S ¼ ðx� iyÞ=ð2r2Þ and Fd
j ¼ r2b=r2.

After some manipulation, it can be shown that the form
factors in Eq. (13) are identical to the expressions in
Eq. (25). The complex form expression (25) can be more
efficient to employ in numerical studies.
Unfortunately, explicit evaluation of the image-field

described by Eq. (5) is complicated and depends on
aperture geometry. To estimate characteristic image-field
effects, we consider the simple case of a circular aperture of
radius rp centered at x? ¼ 0. Then the image induced by
the charge-density rðx?Þ is ri ¼ �r at location
xi? ¼ r2px?=jx?j

2, and Eq. (5) gives

Ei
?ðx?Þ ¼ �

1

2p�0

Z
pipe

d2 ~x?

�
rð ~x?Þðx? � r2p ~x?=j ~x?j

2Þ

jx? � r2p ~x?=j ~x?j
2j2

. ð27Þ

Two limiting forms of Eq. (27) can be examined to
illustrate properties of the image-field. First, to the leading-
order, an off-axis beam can be approximated as being a
line-charge displaced along the x-axis at x ¼ X with
jX jorp [i.e., rðx?Þ ¼ ldðx? � X x̂Þ]. Then the image-field is

Ei
? ¼ �

l
2p�0

x? �
r2p

X
x̂

x? �
r2p

X
x̂

�����
�����
2
. (28)

For r2p=jX j large, the image-field Ei
? will generally be small

relative to the direct-field Ed
? ’ ðl=2p�0Þðx?=jx?j

2Þ. Next,
we take r to be given by Eq. (8), corresponding to a
uniform density, on-axis elliptical beam. In this limit, the
image-charge field of the uniform density beam can be
explicitly calculated from Eq. (27) using complex variables
(for notational convenience). Series expansion shows that
within the aperture

Ei ¼ E i
y þ iEi

x ¼
X1

n¼2;4;...

Cnzn�1, (29)

where

Cn ¼
i

2p�0

Z
pipe

d2x?rðx?Þ
ðx� iyÞn

r2n
p

¼
iln!

2p�02nðn=2þ 1Þ!ðn=2Þ!

r2x � r2y

r4p

 !n=2

. ð30Þ

The leading order n ¼ 2 components of this image-field are
linear with

Ei
x ¼

l
8p�0

r2x � r2y

r4p
x; Ei

y ¼ �
l

8p�0

r2x � r2y

r4p
y. (31)

These expressions show that leading order image-charge
corrections produced for an on-axis elliptical beam are
weak relative to the direct-fields for small beam ellipticities
with jrx=ry � 1j51 and/or a large pipe radius rp. Motivated
by these limiting case results, for present purposes of
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analyzing leading order effects we take F i ¼ 0 and neglect
image-charge corrections. Results in the literature [13,21]
can also be applied to calculate more elaborate image-
charge corrections.

To complete the CP model, evolution equations must be
derived for the envelope radii rj of the uniform density
beam core. For the centered, on-axis beam with image-
charge effects neglected, the core can be self-consistently
described by the KV distribution function where the
envelope radii evolve according the KV envelope equations
[9,10]

r00j þ kjrj �
2Q

rx þ ry

�
e2j
r3j
¼ 0. (32)

Here,

ex ¼ 4½hx2i?hx
02i? � hxx0i2?�

1=2 ¼ const,

ey ¼ 4½hy2i?hy
02i? � hyy0i2?�

1=2 ¼ const ð33Þ

are the x- and y-plane rms-edge emittances of a centered
elliptical beam ðhxi? ¼ 0 ¼ hyi?Þ and h� � � i? denotes a
transverse statistical average over the core distribution.
For the case of a periodic-lattice with lattice period Lp,
kjðsþ LpÞ ¼ kjðsÞ and the beam core is said to be matched
when the envelope-radii rj have the periodicity of the lattice

rjðsþ LpÞ ¼ rjðsÞ. (34)

Envelope matching requires that the rj satisfy appropriate
initial conditions in the lattice. For a matched beam, the
phase-advance of particles moving with the KV beam core
in the presence of linear applied-focusing and space-charge
defocusing forces can be calculated as [9,10]

sj ¼ ej

Z siþLp

si

ds

r2j ðsÞ
, (35)

independent of the initial value of s ¼ si. The ratio of
depressed to undepressed particle phase-advance sj=s0j 2

ð0; 1Þ provides a convenient, normalized measure of relative
space-charge strength with sj=s0j ! 1 corresponding to
negligible space-charge (Q! 0 with ej finite), and
sj=s0j ! 0 corresponding to maximum (ej ! 0 with Q

finite) space-charge intensity. For systems with sufficient
plane symmetry (s0j ¼ s0 and ex ¼ ey), we denote
sj=s0j ¼ s=s0.

A Mathematica [22] based CP code was written to
numerically integrate the particle equations of motion (17)
from initial conditions using a symplectic ordinary
differential equation solver. Tests verify that particles
launched with initial conditions that are contained within
maximum phase-space extent of the KV equilibrium core
remain confined within the core as the particles evolve. The
code numerically calculates the scale of the kj needed to
achieve specified input values of s0 for a variety of periodic
lattices (continuous, solenoid, FODO quadrupole, and
quadrupole doublet, . . .) with piecewise constant kjðsÞ that
are described in Ref. [10]. Beam cores with both matched
and mismatched envelopes can be launched in periodic
lattices. Matched envelopes are calculated using the
methods described in Ref. [23] and are specified by the
lattice type and lattice parameters (Lp, Z, and s0j), and
the depressed phase-advances sj and emittances ej of the
beam core. This parameterization allows convenient expre-
ssion of the relative applied-focusing and space-charge
strength. Specific envelope mismatch modes can also be
launched using the procedures described in Ref. [10].
The CP code launches groups of test-particles at an

arbitrary axial location si in the focusing-lattice. There is
an extensive range of options for setting initial transverse
x?2x0? phase-space coordinates of the particles. All

particles have identical axial velocities ðbb ¼ constÞ. Spatial
coordinates of particles x?ðsiÞ can be initialized along
principal axes of the elliptical beam or within an annular
region of specified extent in the radial and azimuthal

coordinates x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2=r2x þ y2=r2y

q
and y ¼ tan�1ðy;xÞ. The

initial coordinates can be randomly dispersed within the
annular region or regularly distributed. We typically
launch particles with initial x and y coordinates outside

the beam edge (i.e., x2=r2x þ y2=r2y41). Angles of particles

x0?ðsiÞ can be initialized with additive coherent and

incoherent components. The coherent component is set
consistently by extrapolating flows associated with the
flutter of the KV-equivalent core with

x0 ¼ r0x
x

rx

; y0 ¼ r0y
y

ry

. (36)

Incoherent angle contributions are randomly set by either
uniform or Gaussian distributions with amplitudes set
consistent with local rms spread values (i.e., ‘‘tempera-
tures’’) that can vary with spatial coordinate in a specified
manner.
Various diagnostics are implemented in the CP code

including: particle trajectories, single-particle emittances
defined by (for the x-plane, the y-plane is analogous)

�xp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

rx

� �2

þ
r0xx� x0rx

ex

� �2
s

, (37)

stroboscopic Poincaré phase-space plots in various phase-
space coordinates, and particle oscillation wavelengths
calculated from Fourier transforms of orbits. The single-
particle emittance �xp should not be confused with the
statistical beam emittance ex. �xp is normalized such that a
particle oscillating in the x-plane has �xp ¼ 1 when the
particle touches the edge of the core distribution in x2x0

phase-space. Particle trajectories and Poincaré phase-
spaces can be plotted in scaled coordinates [e.g., with
x2x0 projections scaled as x=rx � ðx

0rx � r0xxÞ=ex] to better
illustrate oscillation extents relative to the matched beam
core. To help determine if certain classes of initial
conditions become excited to larger amplitude, diagnostics
can be carried out for groups of test-particles launched

within specified ranges of the radial coordinate

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2=r2x þ y2=r2y

q
.
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Particles evolving both inside and outside the beam
envelope will experience a substantial, space-charge depen-
dent nonlinearity when moving exterior to the beam. To
better illustrate this effect, the scaled radial force acting on
particles for a continuously-focused matched beam
[kj ¼ ðs0=LpÞ

2, ex ¼ ey] of radius r ¼ rb ¼ const is plotted
as a function of r=rb in Fig. 2. The force is proportional to
ðs20=L2

pÞr� ðQFd
x=r2bÞr and is produced by the applied-

focusing and space-charge defocusing forces. Note that the
nonlinear force transition at r=rb ¼ 1 becomes stronger as
relative space-charge strength increases (i.e., s=s0 de-
creases) and there is no nonlinear transition for zero
space-charge strength ðs=s0 ¼ 1Þ.

Nonlinear space-charge effects can be modulated by the
periodic variations (flutter) of the envelope radii for a
matched, elliptical beam in a periodic focusing-lattice to
drive strong resonances for particles oscillating outside the
core of the beam [5]. For simple lattices with a high degree
of symmetry, a measure of the flutter is given by
Max½rx�=rx. Here, Max½rx� is the maximum radial excursion
of the matched envelope over the lattice period and rx ¼

ð1=LpÞ
R Lp

0 ds rx is the average excursion of the matched
envelope in the lattice period. Unfortunately, direct
calculation of the envelope flutter is difficult since the
envelope equation (32) is nonlinear. For a given lattice and
a beam with ej ¼ e, the structure of the matched beam
envelope will depend on the symmetry and strength of the
focusing-functions kj (with scale set by s0) and (more
weakly) on e and s=s0 [10]. Using the methods presented
by Lee [24], it can be shown that the flutter of the matched
beam envelope for periodic solenoidal and FODO quadru-
pole focusing-systems with piecewise-constant kjðsÞ is given
approximately for s=s051 by

Max½rx�

rx

� 1

’

ð1� cos s0Þ
1=2
ð1� Z=2Þ

23=2ð1� 2Z=3Þ1=2
; quadrupole focusing;

ð1� cos s0Þð1� ZÞð1� Z=2Þ
6

; solenoidal focusing:

8>>>><
>>>>:

ð38Þ

Eq. (38) shows that quadrupole envelope flutter depends
strongly on s0 and only weakly on the lattice occupancy Z
(the maximum variation in Max½rx�=rx in Z is �13%),
whereas solenoidal focused envelope flutter depends both
on s0 and Z with zero flutter for Z ¼ 1 (continuous focusing
limit). Note that when s0 increases, the flutter of the
matched beam envelope also increases.

From the discussions above, it is clear that nonlinear
forces acting on a particle moving inside and outside the
beam core will become stronger for increasing space-charge
strength (relatively small s=s0). Nonlinear forces will
oscillate in periodic-focusing lattices due to the matched
beam envelope flutter (generally increasing with s0). The
CP model will be employed in Section 3 to analyze how
these effects can lead to large space-charge induced
increases in particle oscillation amplitudes for particles
moving just outside the matched beam core. Plausible
arguments are presented on how strong, chaotic effects
leading to increases in the particle oscillation amplitudes
can produce transport limits in periodic focusing-
channels [5].

3. Example application: matched beam transport limits

Regions of experimentally observed instability for an
initially plane equilibrated (ex ¼ ey), envelope matched
beam in a FODO quadrupole transport channel are shown
in Fig. 3 as a function of the undepressed single-particle
phase-advance s0 (focusing strength) and the ratio of
depressed to undepressed phase-advance s=s0 of the rms-
equivalent beam core (relative space-charge strength)
[5,25]. The range of s0 is cut off at s0 ¼ 180�, correspond-
ing to the single-particle and centroid stability limit [9]. The
envelope instability band is plotted in gray [10] and rules
out a broad region of possible operating points with
s0490�. Further regions of experimentally observed [25]
higher-order instability are shown in red. Operation in
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these regions is observed to result in rapid statistical rms-
emittance growth and particle losses. Measured transition
points are indicated on the plot for two threshold values
and a curve fit to the experimental transition data (plotted
dashed) gives

s20 � s2 ¼ 1
2ð120

�Þ
2. (39)

The experimental transition data indicated with solid
points exhibited no particle losses or emittance growth,
whereas the open points did. Numbers indicate threshold-
ing fractions in the emittance measurements.

For FODO quadrupole transport there is little change in
these results with variation of quadrupole occupancy Z or
the absolute scale of the beam (set by the lattice parameters
Lp and Z, and the emittances ex ¼ ey). These results are
believed to apply to a wide range of smooth, plane
equilibrated initial distribution functions described by a
purely transverse Vlasov–Poisson model. Parametric self-
consistent simulation studies with a variety of initial
distribution functions produce similar conclusions in the
lower region of higher-order instability with pronounced
emittance growth and particle losses in a machine with a
limited aperture [5]. Points of interest labeled a (s0 ¼ 60�,
s=s0 ¼ 0:1; lower s0, strong space-charge), b (s0 ¼ 95�,
s=s0 ¼ 0:67; high s0 and intermediate space-charge), and c
(s0 ¼ 110�, s=s0 ¼ 0:1; high s0 and strong space-charge)
are indicated (see green labels) inside and outside the lower
region of higher-order instability.

Poincaré plots in scaled x=rx and ðx0rx � r0xxÞ=ex phase-
space coordinates are shown in Fig. 4 for the three points
labeled a, b, and c in Fig. 3. The beam cores are envelope
matched, and the Poincaré strobes are taken at every lattice
period in the middle of focusing-in-x quadrupoles. Particles
are launched between quadrupoles (middle of a drift before
a focusing-in-x quadrupole) along the x-axis ðy ¼ 0 ¼ y0Þ

with x0 ¼ r0xðx=rxÞ. Initial x-coordinates are chosen in
uniform increments from the edge of the beam core until
well outside the core. The Poincaré strobes are initiated
after enough lattice periods to allow nonlinearities to shift
oscillation phases to decohere the specific choice of initial
conditions. Strobes are accumulated over enough lattice
periods to thoroughly sample accessible phase-space.
Scaled coordinates are employed in the Poincaré plots to
reduce the main effects of the matched flutter motion of the
beam core in the periodic lattice, rendering the phase
choice of Poincaré strobe in the lattice period less critical.
The phase-space boundary of the core beam is indicated by
the solid green ellipse with unit principal axis radii. Note
that the Poincaré phase-spaces appear chaotic in all cases
near the core and that higher-order resonant structures
appear at large amplitudes well outside the core as noted
previously by Ryne [26] and Lagniel [6,7]. At very large
amplitudes (beyond the range plotted), the phase-space
becomes regular as should be expected when the applied-
focusing dominates the evolution.

To aid interpretation of the phase-spaces, the same
Poincaré plots in Fig. 4 are repeated in Fig. 5 for a limited
range of launching amplitudes with x=rx 2 ½1:1; 1:2�. This
change to a limited launch range outside the core helps
identify and categorize processes that can result in particles
launched just outside the beam edge evolving to large
amplitudes. Particles may evolve just outside the edge of
the core due to a large number of processes that are not
explicitly investigated (see Section 1 discussion). The
dashed red ellipses indicate extrapolations of the initial
range in phase-space that would occur if the particles
evolved with a linear-force Courant–Snyder invariant [14]
with values set by the initial conditions. The Poincaré plots
exhibit distinctly different behavior when contrasting
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labeled points a and b (stable region) with c (lower unstable
region). For points a and b, particles maintain radial
confinement near the initial launch ranges without
increasing significantly in maximum excursion measured
by x=rx. For point a, the stronger space-charge nonlinear-
ity results in significantly larger excursions in ðx0rx �

r0xxÞ=ex with modest increases in x=rx excursions, while for
point b excursions increase little in either phase-space
coordinate. In contrast, for the unstable case correspond-
ing to point c, particle oscillation amplitudes increase
significantly (note the large change in scale) beyond the
launch range near the core. Within the lower region of
higher-order instability, amplitudes appear to grow until a
4-lobe resonant structure is reached that limits the achieved
amplitude growth.
These processes categorized above are halo-like in that
they involve particles oscillating outside the core. However,
they need not only influence tenuous distribution compo-
nents and may act to significantly perturb the core beam
should a significant number of particles participate. If a
significant number of particles evolve a small distance
outside the rms-equivalent beam core in operating regions
corresponding to higher-order instability, the large increase
in oscillation amplitudes of these particles can produce a
blow-up of statistical beam rms-emittance and particle
losses in machines with a limited aperture. Because no
smooth equilibrium core distribution is known for periodic
focusing and injected beams are in any event unlikely to be
near any equilibrium form, collective waves within the core
resulting from the lack of equilibrium structure provide a
ready mechanism to drive enough particles sufficiently
outside the core in the high s0-regions of observed higher-
order instability to degrade transport [27]. The specific
number and initial rate of particles increasing in oscillation
amplitude will likely depend on the form of the core
distribution. But the underlying mechanism of a strongly
chaotic region of phase-space induced by strong over-
lapping resonances which approaches the core in para-
metric regions of observed higher-order instability will
apply to a wide variety of relatively smooth core beams in a
fully consistent model. Eventually, these unstable regime
processes will act to degrade the beam core in a fully
consistent model. Similar results are observed for particles
with space-charge coupled oscillations in both x2x0 and
y2y0 phase-space. Detailed expressions of the effect are
more complicated in these cases, but the primary char-
acteristics observed for particle oscillations along the
principal x- and y-axes persist. Poincaré plots generated
by accumulating particles evolving outside the core in fully
self-consistent particle-in-cell simulations of a variety of
smooth core distributions confirm essential features of the
predictions.

To further illustrate characteristics of these results, Figs. 6
and 7 show plots of scaled particle orbits x=rx and single-

particle emittance �xp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=rxÞ

2
þ ðx0rx � r0xxÞ2=e2x

q
evolu-

tions. Cases shown correspond to points a (stable case) and
c (unstable case) in Fig. 5. Note that jxj=rx ¼ 1 and �xp ¼ 1
(indicated with green lines on the plots) for a particle at the
edge of the beam core. Only a subset of particles employed
in the Poincaré plots of Fig. 5 are shown to allow
visualization of features. The plots of x=rx provide a clear
measure on how far the particles are evolving outside the
core, whereas the single-particle emittance plots indicate the
corresponding phase-space amplitude of the excursions. In
the case of instability, note that a higher density of particles
appear to remain nearer to the core (but still with large
amplitude) than those that explore the farthest reaches of
the limiting resonance [see Fig. 5(c)]. The orbit plots indicate
that nonlinear processes quickly decohere the phases of
particle oscillations both in the stable and unstable cases. In
the unstable case, the large particle excursions and large
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increase in the single-particle emittances reinforce the
hypothesis that beam quality will be degraded if a significant
number of near edge particles participate in these effects.
For the case of instability, note that the peak single-particle
emittance values are achieved for these initial conditions in a
limited number of lattice periods (significant growths in �5
periods and saturation in �15 periods).

The maximum achieved particle oscillation amplitudes in
x=rx for a FODO lattice are contoured in Fig. 8 as a
function of s0 and s=s0. Maximum amplitudes are
calculated from Poincaré plots generated analogously to
Fig. 5 for particles launched with two limited ranges of
initial values of x=rx chosen a small distance outside of the
matched beam core. The first three black contours are
threshold amplitudes [in (a) 1.2, 1.3, and 1.4; and in (b) 1.3,
and 1.4] and the labeled blue contours range from 1.5, 2.0,
2.5, . . . [max amplitudes are: in (a) 11.0 and in (b) 11.3].
For reference, the extent of the envelope instability band
[10] (band within the solid red curves) and a curve fit to the
experimentally measured transition to higher-order in-
stability [25] (dashed red curve) are indicated. Note that
the transition to large amplitudes is abrupt when space-
charge is strong (small s=s0) and s0 increases beyond
s0�85�. Comparing Figs. 8(a) and (b), this transition
appears to be relatively insensitive to the specific values of
launch radius near the outside of the core. This is in
qualitative agreement with observed trends in transport
degradation based on simulations and experimental
measurements of FODO quadrupole transport lattices
(see citations within Ref. [5]). Operation close to this
amplitude transition region will likely result in distribution-
sensitive degradations in beam quality depending on how
many particles evolve significantly outside the core due to a
variety of processes (collective waves internal to the core
that evolve outside the core, error fields, small mismatches,
etc.). For stable transport with respect to higher-order
instability for smooth distributions, machine operating
parameters can be chosen to avoid regions of large-
amplitude growth factors. For strong space-charge, this
appears consistent with limiting the applied-focusing
strength to s0o85�, which is also consistent with usual
design criteria for quadrupole transport of beams with high
space-charge intensity. What specific amplitude growth
factor can be regarded as sufficiently safe for reliable
transport without significant emittance growth or particle
losses must likely be investigated on the basis of fully self-
consistent simulations. Detailed higher-order stability
criteria may require information on the specific form of
the core distribution and errors acting on the beam. This
becomes especially true if operation is desired close to
transition regions with significant amplitude growth
factors. In this region one would expect more sensitivity
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to processes that might drive particles a little outside the
beam core.

The CP model employed where the core is a uniform KV
beam should be most reliable in a regime of strong space-
charge (s=s0 relatively small) where Debye screening [14]
effects are expected to produce a flat beam core out to the
sharp edge regardless of the detailed distribution form.
Strong, overlapping resonances associated with the trans-
port limits are unlikely to disappear with lesser degrees of
model idealization with different core descriptions. Indeed,
further fluctuations from internal space-charge waves etc.,
might be expected to enhance chaotic transitions observed
in the idealized uniform core model. The use of the CP
model should be most reliable in predicting parametric
regions with strong higher-order instability induced by the
chaotic processes described. However, the CP model is
inadequate to address issues of saturation, rms-emittance
growth and particle losses, and core distortions induced by
these processes. Comparing Figs. 3 and 8, note that the
higher-order instability region above the envelope band
found experimentally appears not to be reproduced in the
CP model. Likewise, limited data from self-consistent
simulations appear not to reproduce this upper, higher-
order instability region [5]. It is unclear whether this is
discrepancy is due to model limitations in this weak space-
charge regime or due to measurement and procedure
limitations associated with very high focusing-strength
(large s0) operation of the machine in the experiment.
Although this regime is not relevant to the highest space-
charge intensity transport, it should be more thoroughly
investigated with self-consistent simulations to verify if
higher-order instability induced transport limits are rele-
vant above the envelope band. If so, ring applications
where s0 is high may be impacted. For example, in fast
rotation bunch compressions space-charge may become
large enough at peak rotations where the beam could enter
an upper region of instability.
Analogous amplitude growth contours to those pre-

sented in Fig. 8 for FODO quadrupole transport are shown
for matched beam solenoidal transport for lattices of low-
and high-occupancy Z in Fig. 9. The same contour labeling
scheme is employed as in Fig. 8. Particles are launched
along the x-axis with x=rx 2 ½1:05; 1:10� and x0 ¼ r0xðx=rxÞ.
Black threshold contours are labeled 1.2, 1.3, and 1.4 and
blue contours are labeled 1.5, 2.0, 2.5, . . . [max amplitudes
are: in (a) 4.7 and in (b) 1.6]. The extent of the bands of
solenoidal focusing envelope instability [10] are indicated
on the plots with solid red curves. Note that in contrast to
FODO quadrupole focusing (see Fig. 8), there are two
distinct bands of envelope instability for solenoidal
focusing and the instability bands become broader with
decreasing lattice occupancy (Z smaller). Although the
space-charge and envelope flutter induced growth in
particle amplitudes is measured for solenoidal focusing,
the effect is much weaker than for quadrupole focusing,
particularly for higher lattice occupancies. Moreover, the
effect for solenoids, in contrast to quadrupoles, is strongly
related to the lattice occupancy. This is not surprising due
to solenoidal focusing being purely focusing (i.e., no
defocusing) which results in less matched beam envelope
flutter than quadrupole focusing for a given value
of focusing strength ðs0Þ. In the limit of high occupancy
ðZ! 1Þ solenoidal focusing is equivalent to continuous
focusing with a constant matched envelope and no driving
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mechanism for amplitude increase. For high lattice
occupancies and strong space-charge, it appears from
Fig. 9(b) that the band of breathing mode instability will
act to limit focusing strength before processes leading to
blow-up of oscillation amplitudes of near-edge particles
occurs.

4. Conclusions

An efficient CP model has been derived to analyze test
particles evolving inside and outside a uniform density
elliptical beam. This model is expected to be reliable for
beams with high space-charge intensity. The edge (envel-
ope) of the core beam can oscillate due to s-varying applied
focusing forces (matched envelope flutter) and distribution
mismatches of the core. For a given periodic focusing
lattice, envelope oscillations tend to become larger as the
applied-focusing strength of the lattice is increased (i.e., as
s0 increases). Diagnostics developed show that halo-like
particles evolving with amplitudes just outside the beam
envelope can experience strong, nonlinear resonance effects
when the envelope is oscillating and space-charge inten-
sities are high. These resonances can overlap and orbits
near the core can become strongly chaotic, leading to a
rapid growth in particle oscillation amplitude. If a
significant fraction of particles participate in such effects
(nontenuous halo), statistical rms-emittance blow-up and
significant particle losses can result, causing degradation of
transport that can be interpreted as a higher-order
instability. Such transport limits can be reduced by
designing lattices and choosing beam parameters where
matched envelope oscillations are reduced to the extent
possible. For example, quadrupole doublet focusing-
lattices will generally be more susceptible to such effects
than solenoidal focusing-lattices due to larger intrinsic
envelope oscillations with quadrupole focusing. The
higher-order instability processes described will be further
enhanced by beam envelope mismatch [28] and in cases
where there are lattice transitions, such as matching
sections to decrease beam size, since these will act to
increase envelope excursions and effective particle phase-
advances—which are both driving mechanisms.
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